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ABSTRACT 

This Thesis develops an efficient and effective method for designing and 

analyzing the performance of various integrated optical waveguide structures using the 

beam propagation method of analysis. Modifications in the physical layout of an optical 

device through changes in coupling connection design, splitting angles and waveguide 

dimensions may have significant effects on device performance. The beam propagation 

method is initially developed for a symmetric Mach-Zehnder interferometer for baseline 

validation of the accuracy and applicability of the propagation scheme. A major 

validation is achieved through modeling an asymmetric device designed and built by the 

Naval Research Laboratory. The validated simulation model is used to analyze the 

performance and design characteristics of complex parallel configurations of 

interferometers. The beam propagation method allows quantitative analysis of the 

performance of these integrated optical devices. The propagation model developed 

implements a new global propagator scheme that substantially reduces computational 

requirements and introduces a design methodology that ensures compatibility between 

the discrete implementation and the physical structure. Also identified are areas in which 

continued research can provide a complete modeling system that may be implemented as 

a stand-alone design and analysis tool. 
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I. INTRODUCTION 

A. BACKGROUND 

A number of computational schemes exist which can be used to numerically 

model integrated optical waveguide structures. These schemes include the second-order 

finite differencing method, the split operator method, the short iterative Lanczos 

propagator and the Chebyshev scheme. These schemes have been utilized to propagate 

solutions to the scalar Homogeneous Helmholtz equation and the time dependent 

Schrödinger equation as well [1]. The applicability of the propagation scheme to the 

physical structure, numerical efficiency, stability of the solution and computational 

constraints must all be considered when choosing a modeling scheme. 

The beam propagation method (BPM) is a split operator method to solve the 

scalar Homogeneous Helmholtz equation. The BPM has been shown to be an effective, 

efficient tool for generating required numerical solutions for waveguide structures [1]. 

The BPM permits the rapid analysis of design parameters and overall system performance 

in an extremely short period of time. 

B. PRINCIPLE CONTRIBUTIONS 

Although the BPM has been previously utilized for optical analysis [2, 3], the 

time constraints and required flexibility for analyzing relatively long complex integrated 

optical devices posed serious problems. This thesis develops an optimal BPM algorithm 

for integrated optic circuits. This thesis develops a methodology for ensuring that the 

discrete parameters used to implement a physical device are matched to the device 

1 



parameters by utilizing a subtle aspect of sampling theory that forces equalization. A 

major contribution of this thesis is the development of the global propagator scheme. 

The global propagator developed in this thesis has made the BPM an important tool for 

designing and analyzing the long structures required for highly sensitive voltage detection 

devices such the Mach-Zehnder Interferometer (MZI). 

This thesis attempts to prove the applicability of the BPM through modeling an 

existing device and comparing the theoretical BPM results to actual data measured in the 

laboratory. The resulting confirmation of the validity of the BPM demonstrates the 

potential applicability of the method. .The validated BPM is utilized to analyze more 

complex parallel MZI structures. The performance of parallel structures is evaluated as a 

function of separation distance between the individual interferometers, and the effects of 

radiation mode coupling are quantified. 

C.   THESIS ORGANIZATION 

This thesis begins in Chapter II with the mathematical development of the BPM 

algorithm. The BPM algorithm is a numerical solution to the scalar Helmholtz equation. 

The equation is broken down into an alternate series of propagation and lens terms that 

allow the optical field to propagate through a guiding structure. The constraints and 

limitations of the BPM are analyzed and a complete set of algorithm design equations are 

developed. This development provides the basis for the global propagator scheme that is 

employed in this thesis. 



In Chapter III the first test of the BPM is the simulation of the well known 

symmetric MZI. Since the single symmetric MZI has been previously analyzed the 

expected output is available for comparison. Although the equations for the output of the 

single MZI do not include radiation losses, this first step is vital in developing a reliable 

design tool. This provides the basis for validation of the global propagator, and 

demonstrates the methodology for implementing the discrete matched device parameters. 

The modeling of the single asymmetric MZI is a major validation phase of the 

code development performed in Chapter IV. The BPM representation of the asymmetric 

interferometer is developed and the BPM analysis is compared to the physical data 

measured in the laboratory. The BPM is shown to be a valid integrated optical design 

tool that effectively implements radiation losses due to device characteristics. 

The complex analysis of a parallel configuration of Mach-Zehnder Interferometers 

is performed in Chapter V. Parallel configurations of guided wave MZI are important in 

signal processing architecture that utilize voltage modulators. The BPM is used to 

analyze the effects of radiation mode coupling between adjacent interferometers and 

radiation losses due to branching angles and power dividers. 

Finally, Chapter VI addresses the potential use of the BPM for design of other 

integrated optical devices. The use of integrated optics is a growing area of signal 

processing and the use of optical computers is rapidly becoming a reality. Potential 

improvements of the BPM algorithm to include other optical effects and unusual design 

parameters are addressed. 





II. DEVELOPMENT OF AN OPTIMAL BPM ALGORITHM 

A. BEAM PROPAGATION METHOD 

The Beam Propagation Method (BPM) is a numerical solution to the wave 

equation that effectively models an optical structure as a series of infinitely thin lenses 

separated by an incremental axial distance Az. 

1. Fresnel Approximation to the Wave Equation 

If we assume that light propagating in an optical waveguide is monochromatic, 

then we can apply the homogeneous Helmholtz Equation 

V2E + ^n2(co,x,y)E = 0, (1) 

where the refractive index n2(o, x,y) is assumed to only have dependence on the x and y 

coordinates [4].  If we assume a forward propagating field in the + z direction, then we 

can express E(co, x, y, z) as 
E(co, x, y, z) = E exp (-j k z), g) 

where 

k = n0co/c, 
(3) 

and n0 is the refractive index of the substrate. 

By substituting Equation (2) into Equation (1) we now have 

V2E exp (-j k z) + ^r- n2(x, y)E exp (-j kz) = 0. (4) 
c 

Since 

V2 = ^ + ^ + A (5) 
dx2    5y2    5z2 

we can evaluate the partial derivative with respect to z separately, so that 

d2 „       , •,   ,     d —Eexp(-jkz) = ^Eexp(-jkz)_ d (6) 



d_ 
dz 

exp (-j kz)-^ E - jkE exp (-j kz) (7) 

exp(-j kz)f7E -jkexp(-j kz) ^E -k2exp(-j kz)E - jkexp(-j kz) ^E       (8) 
dz2 dz 

= exp (-j k z)£^E - 2 jk exp (-j k z) ^E - k2exp (-j k z) E 

By substituting Equation (9) into Equation (4) we now have 

-^rE - 2 jk #E - k2E + ViE + k2 ^E = 0, 
5z2 dz n2 

where 

vi = -£- + -£-. 1    ox2    By2 

Now, rearranging the terms of Equation (10) into a more recognizable form we have 

-^E + 2ik^E = V2E + k2l4-l 
dz* 

E + 2jk^E = ViE + k^ E. 

(9) 

(10) 

(11) 

(12) 

If the field is slowly varying in the + z direction then we can neglect the first term on the 

left in Equation (12). This gives the paraxial or Fresnel form of the wave equation 

2jk|-E' = ViE' + k2fe-lV (13) dz U2      J 

or 

l-E' + ^r 
dz        2k 

vi+k2|^-i 2 n: E' = 0, (14) 

where E' represents solutions to the Fresnel approximation to the wave equation.  Since 

Equation (14) represents a standard ordinary differential equation, the solution is 

Vi+k2 ^-l|]   E'(x,y,0), 05) E'(x, y, Az) = exp 
jAz 

"2k 

/ 

V vn; 



where E'(x,y,0) is the initial condition of the field at z = 0.  Separating the operation of 

the exponent in Equation (15) provides the basis for the Split Operator Method (SOM) or 

BPM [2], so that we now have 

(  iAz   -,\ 
E'(x, y, Az) = exp |- ~^\) e*P -J—k2 

2k k 
rr E'Cx.y.O). (16) 

As developed in [2], Equation (16) can be further split so that 

E'(x, y, Az) = exp ^-^-Vij exp 
jAzk 

Vn2, 
eXPr"^Vi)E/(X'y'0) 

+ 0(Az)3, (17) 

where the three exponential factors represent a half step of propagation, a phase or lens 

term, and a second half step of propagation respectively. Since the Vx term in the first 

exponential term of Equation (16) does not commute with the x and v dependence of the 

second exponential term, an error term O(Az)3 is introduced in Equation (17). The error 

term is not evaluated at this point since the split operation is not actually performed in the 

BPM implementation. In structures that require large axial distances, adjacent 

propagation steps are normally combined to reduce computation time, as will be shown in 

a later section. However, Equation (17) provides an excellent method of visualizing the 

propagation process by replacing the optical waveguide with a series of infinitely thin 

lenses [1], as shown in Figure 1. 

If the initial field is composed of a limited spectral bandwidth then the field can 

be represented by a truncated Fourier series such that 

N/2 M/2 

E'(x,y,z)=     S S     E'm(z)exp[jf^ + ^j (18) 
m=-N/2+l n = -M/2+l L v    M L2    ' J 



where L, is the width of the computational grid in the x direction, L2 is the width of the 

computational grid in the y direction and N and M are the total transverse points in the 

z = 0 

Az 

A 

■*■ 

\l 

Az 

A 

■*- 

1/ 

Az 

A 

*■ 

V 

Az 

A 

V 

->   z 

Figure 1. Thin lens representation of BPM algorithm. 

computational grid. If the propagation term 

(   JAZ    2^ 
expr4kVx; 

operates on the Fourier series representation of Equation (18) the result is that 

E7 mn(z + Az/2) = E7 mn(z)exp 
jAz ((2nm\2    (2%n\ 
4k U Li )      ^L2 ) 

2^ 

(19) 

(20) 

This technique allows the field to propagate forward by calculating new Fourier 

coefficients based on the spatial frequency propagator 

f27rm^    , (27tn 1 exp 
jAz 
4k 

(21) 

that is used in Equation (20). In effect this leads to the determination of a new Fourier 

series representation of E' (x,y,z + Az/2 utilizing Equation (18). The new representation 

of the complex field is then multiplied by the lens term 

exp 
jkAz 

Vn^ 
1 (22) 

of Equation (17).    This in turn leads to the determination of another Fourier series 

representation of the field at E' (x, y, z + Az/2   immediately after the lens, and the 



propagation step is applied once more. The application of Equation (20) allows the use of 

Fast Fourier Transform algorithms to implement the propagation terms in Equation (17). 

This concept allows for a much easier algebraic implementation of the propagation term 

in the spatial frequency domain, while the phase or lens term is performed with simple 

multiplication in the spatial domain.    Thus, the BPM consists of a set of Fourier 

transforms interspersed with complex multiplications in the spatial domain in an iterative 

algorithm that advances the solution in successive steps along the optic axis [5].   The 

Fourier transforms are carried out using the well known Danielson-Lanczos FFT 

algorithm and require transverse grids of 2m> x 2m2 in the spatial and spectral domains, 

where m, and m2 are determined by N and M of Equation (18) and are subsequently 

analyzed. 

2. Direct Solution to the Wave Equation 

An alternate method of developing a split operator solution to the wave equation 

without initially making the Fresnel approximation has also been utilized [2]. If Equation 

(1) is rewritten in the form 

^E + (vi + ^n2(x,y))E = 0, (23) 

the representation of Equation (23) can be treated as a second order ordinary differential 

equation. The solution at z = Az may be written in terms of the field at z = 0 as 

E(x,y,Az) = exp 
f 2      \V2 

±jAz(vi + ^) E(x,y,0). (24) 

The square root in the exponent of Equation (24) can be written in the form 



i^"2) 
1/2 vi + (co«/c)2 

1/2 \ 1/2 
Vi + ((on/c)2 J     + (an/c) 

Vi + (oow/cr I     + (ow/c) 
1/2 (25) 

1/2 
Vi + (an/cy 1 +1 Vi + (co«/c)z I    (caw/c) 

1/2 

Vi + (an/cY I     + (ö)«/C) 

(26) 

vi (a/i/c) + (GM/C)I Vi + (con/c) 
1/2 

1/2 
■ + • 

Vi + (co«/c)2       +(co«/c) IVi + (co«/c)z)     +(©/i/c) 
1/2 (27) 

(am/c) 

1/2 
+ 

(o/i/c) + l Vi+(co«/c)2 
1/2 

Vi + (ö)«/cr)     + (con/c) IVi + (con/c)zJ     + (co«/c) 
1/2 (28) 

Vi 

Vi + (COH/C) J     + (CDH/C) 
1/2 

+ (cofl/c). (29) 

If the variations in n(x,y) are sufficiently small, then the n in the first right hand member 

of Equation (29) can be replaced with »0and utilizing Equation (3) we have 

1/2 

(^j 
vi  + k2L 

vi + yt2     +k 

(30) 

vi 
Vl+£2        +k 

1/2 
+ k+k-£--k (31) 

Vi 
1/2 

VUit2)     + £ 

+ * + *lt"lj- (32) 
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If we now substitute Equation (32) into Equation (24) and assume a + z propagating 

wave, we can apply Equation (2) and we have 

E(x, y, Az) = exp -jAz vi 
(
I/2 

V^+k2      +k 
^t'1 

E(x,y,0). (33) 

At this point the resemblance to the Fresnel approximation solution given in 

Equation (15) is readily apparent. However, if Vi in the denominator of Equation (33) is 

neglected in comparison to k2, an almost exact reproduction of Equation (15) is 

recovered. The representation of Equation (33) can now be written as 

E(x,y,Az) = exp(-J^Vl)exp[-jkAz(^ E(x,y,0). (34) 

Using the same split operator technique that was used in developing Equation (17) 

E(x,y,Az) = exp(-J-^Vi)exP[-jkAz(^-l)]exp(-J-^vi)E(x,y,0) 

+ 0(Az)3, (35) 

where the same error term 0(bzf used in Equation (17) is used here due to the 

commutation error of the transverse Laplacian. This expression is now seen to be almost 

identical to the split operator developed in Equation (17). The impact of the change in 

the lens parameter on optical structures is evaluated in subsequent sections. The only 

difference between the split operators of Equations (17) and (35) is a change in the lens 

term from 

exp 
jkAz 

-1 (36) 
vn£ 
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to 

exp -;M£-i (37) 

However, it must be noted that approximations were made in deriving both 

equations (30) and (33). Subsequently, the Fresnel approximation leading to Equation 

(17) is used as the primary algorithm in this analysis. 

3. Effective Index Method 

One of the main objectives of this thesis was to develop and analyze the 

applicability of a fast, efficient BPM algorithm that is adaptable to varying structures. 

The first step in this process is to reduce the three-dimensional optical structure that is to 

be analyzed to a two-dimensional structure. Analyzing Equation (18) it is readily 

apparent that a two-dimensional (M x N) point FFT must be carried out for each 

propagation step over the axial distance tSz/2.  Assuming an effective step index change 

in the guiding structure allows the overall device to be reduced to one transverse 

component in x, so that the refractive index can be written as 

n(x) = n0 + hn-rect{^°-), (38) 

where bn = ng-n0 is the index difference between the waveguide and the substrate and w 

is the width of the waveguide [3].  This obviously results in a reduction of MFFT's for 

each propagation step over a potentially long structure. 

Implementing a one-dimensional cross-section results in a reduction of Equation 

(17)to 

+ 0(Az)3, (39) 

12 



and a reduction of Equation (18) to 

Nil 

E/(x,z)=.    Z     E'm (z) exp 
m = -NI2+\ 

.( 271 mx 
L 

(40) 

where L is the width of the computational grid in the transverse x direction. The number 

of gridpoints N must be determined based on physical constraints of the optical system. 

The number of grid points and therefore the transverse sampling interval Ax are 

determined for each structure and are developed in their respective sections. 

The same concept that was used to propagate the three-dimensional solution is 

used on the two-dimensional solution. If the propagation term 

( Jte d2 } (41) 

of Equation (37) operates on the Fourier series representation of Equation (38) the result 

is that 

jte(2nm 
4äA  L 

(42) E' m(z + Az/2) = E' m(z)exp 

Once again, this technique allows the field to propagate forward by calculating new 

Fourier coefficients based on a spatial frequency propagator 

exp 
4k V  L   J 

(43) 

One of the major contributions of this algorithm was developed at this point. 

Noting that the spatial frequency propagator depends upon physical parameters of the 

system, but not on the lens structure, the propagator can be determined at the initial stage 

and stored as a propagator array. If the propagator is predetermined it reduces the 

number of FFT's required in the two-dimensional structure by the number of 

propagation steps in the overall structure.    The total number of steps in an optical 

13 



structure is typically on the order of several thousand steps, as is shown in the analysis 

performed in subsequent sections. 

4. Algorithm Implementation 

a. Absorption Window 

The optical devices analyzed in this thesis are modeled using a step index 

profile, as mentioned previously. The step index profile is potentially problematic due to 

the discontinuities in the lens structure [3]. These discontinuities in the index profile 

excite spurious high spatial frequencies (i.e., radiation modes, and therefore energy 

leakage) when the BPM analysis is carried out [5]. The optical devices analyzed are 

primarily interferometers, but also include variations of Y-junction power dividers 

(YPD's). Interferometers inherently incorporate various branches in the guiding 

structures, as will be shown. These junctions and branches contribute significantly to the 

overall radiation losses of the device, and are therefore a major source of energy leakage. 

Due to the periodic nature of the Fourier transform and the finite structure 

of the system, as these radiation modes propagate to the edge of the computational 

window in the transverse plane, they are folded back to the opposite edge of the window 

in subsequent propagation steps. This energy is seen as high frequency noise and may 

cause high frequency numerical instabilities [5] depending on the physical system being 

modeled. To avoid this potential problem, the radiation modes are absorbed at the edge 

of the window. This is seen as a valid approach since the radiation loss itself is calculated 

by measuring the contained power in the guiding structure. 

14 



The absorption window is implemented using a gradual field absorber near 

the window boundaries given by [2, 6] 

absorb{x) = 
1, \x\ < \xa\ 
\/2(l+cos[n(x-xa)/(xa-Xb)]),      \xa\ <\x\ <\xb\   , (44) 
0, \Xb\ < \x\ < \xr\ 

where xr is the coordinate of the grid boundary, xa represents the inner edge of the 

absorber, and xh is the outer edge. The parameters of the absorbing window must be 

chosen for each device independently to ensure the field is absorbed over a sufficiently 

large region while ensuring that the absorber itself does not interfere with the guided 

modes of the device. 

Although the absorption window is tailored for each device, as mentioned 

earlier, a generic absorber utilizing Equation (44) is shown in Figure 2 for illustrative 

purposes. In the example in Figure 2, the parameters xa = 200, xh = 255, and xr = 256 are 

used. 

b. Transverse Sampling Interval 

An additional problem introduced by discretizing an optical circuit is 

discovered in determining the transverse and axial sampling intervals. This problem is of 

course compounded when attempting to implement a discontinuity such as a step index 

profile. Five factors must be considered [3, 5] when determining the transverse sampling 

interval Ax: (1) the size of the FFT window, (2) the range of the field's angular spectrum, 

(3) computer limitations, (4) the tolerable trapezoidal distortion of the step index caused 
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Figure 2. Typical absorption window. 
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by the finite grid, and (5) the tolerable index boundaries location uncertainty, also due to 

the discrete nature of the grid. 

The first parameter determined is the window size W, which represents the 

physical dimension of the system being modeled. The window size must include the 

entire optical structure and must allow sufficient distance for decay of the evanescent 

fields and the absorption window. Since the window is dependent upon the specific 

system, W and therefore Ax must be determined separately for each device. 

The propagation of the light in the waveguide is considered to be paraxial 

since the direction of propagation is predominantly forward. The physical spectral range 

is chosen to be that which corresponds to propagation within |9| < rt/4 of the optical (z) 

axis.  Utilizing this limitation on the spectral range, the highest angular frequency to be 

represented by the grid is given by [3, 5] 

Kx=ksin(7t/4), (45) 

where k is given by Equation (3).   However, the highest angular frequency that can be 

represented by an FFT with Appoints is given by 

(2K 

Due to the limitation of the FFT 

kr=f^l (46) 

Kx<kr = (ff) (47) 

Therefore the number of gridpoints N should satisfy 

N>2r^Wsin(7t/4) (4g) 
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For a given structure of window size W, the transverse sampling interval is readily found 

to be 

and as previously noted, must be determined for each device modeled. 

c. Axial Sampling Interval 

As previously mentioned the split operator development includes an error 

due to the commutation error and conditions on the maximum axial sampling interval 

must be determined.  For the BPM to be applicable, the following four conditions must 

be satisfied [3, 5, 7]: 

^)Mi)4^(^2t?(^y<<st+4(i)2. (50) 

*«f f?(^)T' <5» 
2 ,    /„,A2 

+ 2 

Az«Jn^(p+sy
l, (52) 

—2 Az« 6k(p + s)   , (53) 

where 8n is given in Equation (38) and s and p are the highest transverse spatial 

frequency components of the band-limited index profile and the propagating field, 

respectively. The Fourier transform of the step index profile defined by equation (38) is 

given as 

3 {bn rect (x/w)} = w sine (wfx), (54) 
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where fx is the angular frequency component. Since the majority of the sine function's 

energy is contained within the first three lobes of the function (greater than 97%), p is 

taken to be the third zero crossing of the sine function, so that 

w-fx097=3 (55) 

or 

(w-fX097)    3TT (56) P w w 

Since the field distribution is much smoother than the index profile (due to 

the step index), we also take the value of p to be a more stringent requirement for s, so 

that 

s = p (57) 

is a valid bound on s. Substituting the values of p and s into the applicability conditions 

of Equations (50) through (53), Equation (53) is found to be the most stringent and is 

subsequently used for determining the axial sampling distance Az. 

Now that a complete set of equations have been developed for the BPM 

algorithm and the expected limitations have been analyzed for general optical systems, 

the next step is to develop a practical implementation for the modeling system. 
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III. BPM IMPLEMENTATION OF A SINGLE SYMMETRIC MACH-ZEHNDER 
INTERFEROMETER 

A.   ARCHITECTURE OF THE MACH-ZEHNDER INTERFEROMETER 

The architecture for the first system modeled is shown schematically in Figure 3 

and consists of a single MZI with equal path lengths (symmetric) and Y-power dividers 

and combiners.   The corresponding parameters are shown in Table 1.   The separation 

distance da between the branches of the interferometer is varied by changing the length 

of L2 and by changing the branching angle a. The index of refraction for the step index 

waveguide is given by Equation (38), where n0 = 2.2 is the LiNb03 substrate index and 

the static index difference between the waveguide and substrate 8« = 5.1x 10"3. The input 

waveguide has a width of w, = 3.0 urn and the maximum guide width in the YPD is given 

by w0 = 5.61 urn. The branching angle a is initially set at 1°, but is subsequently varied 

in the analysis in order to quantify the impact of branching angles on radiation losses. 

1. Linear Electrooptic Effect 

The linear electrooptic (Pockels) effect provides a change in the refractive index 

proportional to the applied electric field, which for LiNb03 corresponds to [8] 

A».--^]* (58) 
v   l   J 

where the electrooptic tensor element r33 = 30.8 x 10"12 (m/V).   A typical electrode 

configuration [8] for an integrated optic device is shown in Figure 4.  If a voltage V is 

applied to the electrode shown in Figure 4, the resultant electric field through the 

waveguide has an approximate magnitude of 

1*1 »(£), (59) 

21 



Z 
> V 

V        *  " ans 

A 

L7 
V 

V           A                   A            A 

L6PP 
W'decay 

> 

V L6P L6 
r"V             / 

/ \\ __.¥-_ 

/ \ 

da 

L5 

W\  > <  

\ 

 > (   _- 

</ 
/ 

L4 
\ 

/ / 

> 

> 

L4P 
Wo >j ccc 

*\ /                        \ 

L4PP 

f     > '_ > f 

W\   -> <  Ll 

X 0 

Figure 3. Schematic diagram of a single symmetric Mach-Zehnder Interferometer. 
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Figure 4. Typical electrode configuration. 
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where G is the physical gap or separation between the electrodes, as shown in Figure 4. 

However, neither the applied field nor the optical field is uniform.  The effective 

electrooptically induced index change within a cross section of the waveguide is [8] 

Ang(v) = - -j- [-) T, (60) 

where T is the overlap integral between the applied electric field and the optical field. T 

is defined as 

Y- - J]"Eeiec(x,y)|Eopticai(x,y)|2 dxdy (61) 

W] 3 um 

w0 5.61 urn 

da 20 um 

LI 12 um 

L4 f(da) 

L5 1000 jam 

L6 L4 

L7 500 um 

ac 5° 

a 1° 

Table 1. Schematic parameter values. 

For an electrode gap/mode width ratio of 1, the resultant overlap integral T = 0.5 [8]. The 

electrooptic effect can now be added to the lens equation for the region where electrodes 

are to be utilized, such as the L5 region of Figure 3. The total phase shift induced in the 

waveguide over the electrode length L5 is 

AßL5=- 
7rn^r33 (V\JU (62) 
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^n3
gr33L5r (y M (63) 

If a push-pull configuration such as Figure 3 is utilized, the output intensity is 

given by [8] 

Po = COS\        X VG>. 

This gives an excellent theoretical prediction for the symmetric interferometer with which 

the BPM results can be compared. The theoretical output intensity of Equation (63) gives 

a prediction of the periodic output intensity that has a first null at 

ZL5I T33ng 

which for this device is calculated as 

V, = (*>0*10-9)(3><10-6)      -17V. (65) 

2(1000 x 10-6)(0.5)(30.8 x 10"12)(2.2)3 

This would produce a voltage folding period of approximately 16.34 V, which can be 

used to verify the accuracy of the BPM.   However, Equation (63) does not take into 

account radiation losses due to branching angles or power dividers. 

2. Structural Parameters 

In   developing   structural   parameters,   and   therefore   BPM   implementation 

parameters, the guidance or mode confinement characteristics of the waveguide must be 

considered.    The guidance strength in a three-layer waveguide is determined by its 

normalized frequency V„, defined by [5] 

V„ = ^p^(2n08n). (66) 

A higher V„ means stronger guidance and therefore better mode confinement. For a given 

V„, a waveguide can support M guided modes, where 

(M-1)7T<   Vn <   M:i. ,6yx 
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For this device A, = 0.9 um was used. Since n0 and Sn have already been determined, the 

choice of w, determines V„. In this analysis strong guidance with single mode operation 

was desired, therefore wx = 3.0 urn was chosen. This results in a normalized frequency V„ 

= 3.137, which provides single mode operation. The next step in implementation is to 

determine the overall grid size. The grid size is needed in Equation (40) for the spatial 

frequency propagator and is also utilized in Equation (46) when determining the 

transverse sampling interval. In the initial analysis, the arm separation distance da shown 

in Figure 4 is forced to be 20 urn by choosing the appropriate length for L4, with a fixed 

branching angle a. If an absorption window of 7 urn is implemented on each side of the 

grid and a radiation mode decay distance wdecay is chosen as 10 urn, we can determine an 

appropriate grid size as 

W=da+2\V\+2 Wdecay + 2 Wabsorb = 60 U/W. , ™ 

In this analysis the MZI structural parameters will be manipulated so an additional buffer 

of 20 urn is proposed to be added to Equation (68), resulting in W= 80 urn. 

3. Sampling Interval 

At this point, all of the information required to determine the transverse sampling 

interval Ax as given by Equations (48) and (49) is available.   Since we know from 

Equation (48) that 

JV>^^-sin(7i/4), (69) 

we therefore have 

2(2.2)(80um) 
900 nm 

26 

f      \ 
1 

v72y 
= 276. (70) 



Since the algorithm is to be implemented using FFT's, as previously mentioned, this 

would require N = 512 for this circuit. Noting that W = 80 urn provides much more 

radiation mode decay distance than is required by Equation (68), if W = 69.81 urn is 

chosen, an additional 9.81 urn additional distance over the Equation (68) requirement is 

still provided, the significance of which will be shown directly. Applying W= 69.81 urn 

to Equation (69) we now have 

W>241, (71) 

so N= 256 is chosen. The significance of the relationship between N and W is shown by 

utilizing Equation (49), where 

f 69.81 \im')    n~n~n rnn, 
= I    256    ) = VLm' 

Since the guide width must be implemented in discrete steps and has been chosen as 3.0 

urn, we can determine the actual discrete guide width vvd by finding the number of grid 

steps 

wd = 
(2>.Q\xm\ 
V   Ax   ) Ax = 2.996 pm, (73) 

where |_ J denotes an integer value.  This demonstrates the importance of choosing the 

correct relationship between W, N, Ax, wx and wd. As an example, if the grid size of W = 

60 urn developed in Equation (68) had been used, then the result would be Ax = 0.234 urn 

and using Equation (73), wd = 2.8 urn.  This would reduce the guidance strength of the 

model structure.   Therefore the parameters chosen for this analysis are: JV = 256, W = 

69.81 urn, and Ax = 0.2727 urn. 
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Since the guide width has been chosen to be 3.0 urn, and the discrete guide width 

wd has been designed to be approximately 3.0 um as well, the requirements for the axial 

sampling interval can now be determined. Solving Equation (56) we find 

P: 37T 7T (74) 
.3 um;     ^m' 

and as noted in Equation (57), p = s. As previously noted, the most stringent criterion is 

given by Equation (53) so that 

Az « 2.4 urn (75) 

In order to reduce computation time Az = 2.4 um is used in these simulations, which 

provides valid results when compared to the theoretically expected values.   All of the 

structural parameters for the BPM implementation have now been developed.   The last 

factor to be determined is the mode distribution of the optical input field. 

B.   SYMMETRIC EIGENFUNCTION INPUT 

The input eigenfunction un(x, z = 0) to the interferometer is computed analytically 

using an algorithm implemented in a C++ program.  The normalized field distribution in 

the input waveguide is given by [3, 5] 

un(x,z = 0) = 
cos(kiox), |x| <wi/2 

where 

and 

cos(ki0wi/2)exp[-k2o(lx|-wi/2)],   |x| >wj/2 

i 27i nfi 
kio = 

^   X 

1/2 

ß^ 

£20 P2- 
-11/2 

(76) 

(77) 

(78) 
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The fundamental mode eigenvalue ß0 is extracted from the transcendental eigenvalue 

equation 

For the 3.0 um waveguide used in this analysis ß0 = 15381674 cm"1. The input field that 

is to be launched in the BPM algorithm is calculated numerically.  Figure 5 depicts the 

symmetrical mode eigenfunction that is launched into the guiding structure. 

C.   BPM IMPLEMENTATION 

1. Program Structure and Implementation 

Now that all of the parameters of the BPM algorithm have been determined, the 

structure to be simulated has been chosen and the input field has been selected, the final 

step is to implement and demonstrate the BPM. A detailed flow diagram of the BPM 

algorithm is shown in Figure 6. As mentioned previously, one of the key contributions of 

this thesis was the reduction in computational time produced by implementing a global 

propagator. Since the propagator is applied in the spatial frequency domain, an analysis 

of the optical field in the frequency domain provides invaluable insight into the operation. 

The optical field is stored in an array during each propagation step along the optical axis 

and the FFT is applied to the optical field. The Fourier transform of the optical field 

demonstrates the symmetry that is intuitively expected and is shown in Figure 7. Another 

major reduction in computation time is achieved by noting the effect of this symmetry of 

the Fourier transform. If the propagator array is prefolded then it can be directly 

multiplied by the optical field in the frequency domain, eliminating the need for bit 
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Figure 7. Fourier transform of the symmetric eigenfunction input. 
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reversal during the propagation loop. The normal and prefolded complex propagators are 

shown in Figure 8(a) and 8(b) respectively. 

The beam propagation method of analysis provides a convenient method of 

viewing the launched eigenfunction as it propagates down the optical structure. The 

BPM implementation of the guide structure shown in Figure 3 is detailed in Figure 9(a). 

To demonstrate the radiation modes being studied, Figure 9(b) details the magnitude of 

the optical field |E'(x,z)| as it propagates down the interferometer. The spacing between 

the arms of the MZI is da = 20 urn. From these figures the periodic radiation mode 

coupling between the arms of the interferometer is readily apparent. Figure 10 shows a 

cross-sectional view of the center of the interferometer superimposed upon a scaled 

model of the step index profile (for reference), and shows the mode distribution within 

each waveguide with 0 volts applied. A detailed view of the Y-power divider designed 

for this interferometer is shown in Figure 11. The BPM implementation of the index 

structure is shown in Figure 11(a) and the BPM calculated optical field distribution is 

shown propagating through the structure in Figure 11(b). A key insight into the 

mechanics of the MZI can be obtained by viewing the output characteristics. Figure 12 is 

a detailed view of the output power combiner for this device. The output characteristics 

are demonstrated in Figures 13(a) and 13(b), with 0 volts and 8.17 volts applied to the 

electrodes receptively. The theoretical null predicted by Equation (65) is verified through 

the demonstration in Figure 13(b). The impact of the modulation voltage is clearly 

demonstrated by viewing an instantaneous cross-section of the device. A cross-sectional 
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Figure 8. Global propagator: (a) normal; (b) prefolded. 
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(a) 

Figure 9. Single symmetric MZI: (a) step index profile; (b) BPM analysis. 
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Figure 10. Cross-sectional view at the center of L5 with V = 0. 
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(b) 

Figure 11. Input YPD design analysis: (a) step index profile; (b) BPM analysis. 
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Figure 12. Output power combiner design: step index profile. 
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(a) 

(b) 

Figure 13. Output power combiner BPM analysis: (a) V = 0 volts; (b) V = 8.17 volts. 
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view of the output section L7 is shown in Figure 14(a) and 14(b) for 0 volts and 8.17 

volts applied. This view clearly, shows the desired interference effect introduced by the 

modulating voltage 

The BPM propagation algorithm is implemented in a C++ program. The 

implementation allows branching angles, structural lengths and electrode voltages to be 

input through external script files. This enables rapid assessment of the impact of 

changing design parameters on the overall device performance without recompiling. This 

gives the potential for a stand alone, platform independent design package. A typical 

flow chart of a BPM analysis showing the usual sequence of implementation and analysis 

is shown in Figure 15 As shown in Figure 15, once the eigenfunction is calculated for a 

specific structure it is stored for repeated analysis. A command line script file is utilized 

to provide structural or electrode voltage parameters so that detailed analysis of system 

performance can be performed without continual user input. A set of script files used for 

manipulating voltage and structure parameters for the devices in this thesis are shown in 

the Appendix. 

2. Validity and Applicability of the BPM 

The theoretical output intensity of the interferometer being modeled is given by 

Equation (63). Varying the electrode voltage from 0 to 20 volts and comparing the BPM 

output intensity to the theoretical intensity of Equation (63) gives a good analysis of the 

validity of the BPM. The BPM calculated output intensity is shown versus the theoretical 

output intensity in Figure 16. The 16.34 volt folding voltage predicted by Equation (65) 
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Figure 16. Theoretical versus BPM calculated output intensity. 
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is in fact closely tracked by the BPM analysis. The results of Figure 16 imply that the 

BPM provides an accurate prediction of interferometer performance. The alternate lens 

equation developed in Equation (35) was also used to analyze the symmetric MZI. As 

demonstrated in Figure 17, the alternate lens equation has little effect on the analysis. 

Design parameters of an MZI can have dramatic effects on optical device system 

performance, and can be easily modeled using the BPM. Varying the length of section 

L4 in Figure 3, while holding the branching angles constant, changes the arm separation 

distance da. The impact on radiation mode losses and coupling can be significant. The 

radiation mode coupling with arm spacing da = 5 urn is shown in Figure 18, while the 

results shown in Figure 19 demonstrate the effect of increasing the spacing to Ja = 10 um. 

It would seem that by increasing arm separation radiation mode coupling would be 

eliminated. However, a major problem in system design is performance optimization. 

As arm spacing is increased, so is the overall device length. The device length has a 

direct impact on loss, which is normally to be minimized. The overall device loss 

through the interferometer is calculated as 

Loss = 10 log f^O. (80) 
^ "in ' 

The device loss for arm spacing da = 5 urn, 10 um, and 20 um was calculated as 1.6, 0.49, 

and 0.72 dB respectively. However, by reducing the splitting angle a of the device the 

loss can be reduced. The loss with a = 0.6 degrees was calculated for arm spacing da = 5 

urn, 10 (am, and 20 jam as 0.7, 0.1, and 0.2 dB respectively. The effects of reducing the 

splitting angle on loss are clearly evident and the reduction in radiation mode coupling 

44 



Alt. lens: ++++++ 

20 
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Figure 18. MZI with spacing d = 5 um: (a) step index profile; (b) BPM analysis. 
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(a) 

Figure 19. MZI with spacing da= 10 um: (a) step index profile; (b) BPM analysis. 
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can easily be seen utilizing the BPM. An analysis of the reduction in radiation mode 

coupling is shown in Figures 20, 21, and 22 for arm spacing da = 5 um, 10 um, and 20 

um respectively. The most notable difference is achieved for Ja = 5 urn; comparing 

Figure 18 to Figure 20 it is apparent that increasing branching angles has a dramatic 

effect on device loss due to the lack of energy containment at increased branching angles. 

The BPM is an excellent tool for minimizing these types of loss prior to fabrication. 

The BPM has now been demonstrated as a viable tool for optical system design 

and has been validated through comparison of calculated results to theoretical predictions. 

However, as was noted previously, the theoretical prediction of Equation (63) does not 

include radiation losses and thus gives no indication of expected device loss, such as 

Equation (80). 
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(b) 
Figure 20. MZI with spacing d = 5 urn: (a) step index profile; (b) BPM analysis. 
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Figure 21. MZI with spacing da= 10 \im: (a) step index profile; (b) BPM analysis. 
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Figure 22. MZI with spacing da= 20 [im: (a) step index profile; (b) BPM analysis. 
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IV. SINGLE ASYMMETRIC MACH-ZEHNDER INTERFEROMETER 

A.   DEVICE PARAMETERS 

A true test of the validity of the BPM is achieved through modeling a physical 

device that can be tested in the laboratory. An asymmetric Mach-Zehnder Interferometer 

fabricated by the Naval Research Laboratory [9] is used for this purpose. A schematic 

representation of the physical device, showing electrode placement, is shown in Figure 

23. The representation used to develop the BPM implementation of the physical device is 

shown in Figure 24. The physical dimensions of the asymmetric device are given in 

Table 2. A major increase in computational time is intuitively expected from the overall 

device length of 21.96 mm compared to 1.32 mm for the symmetric device. 

The first step in implementing the asymmetric structure is to once again determine 

the grid parameters.   Since in this case a reverse engineering process is utilized, some 

flexibility would seem to be removed.  However, the discrete guide width wd must still 

match the physical guide width wx.    Using Equation (68) the overall grid width 

requirement is determined to be 

W> 128 urn ,gj. 

However, using previously gained knowledge of the relationship between N, W and Ax, 

the grid size is chosen as W= 139.264 um. Since this device was designed to operate at a 

wavelength of 1300 run, the number of grid points is determined using Equation (69) so 

that 

N> 2(2.2X139.264^)^ = 333 (g2) 

1300nm J2 
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Figure 23. Asymmetric interferometer showing electrode placement. 
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Figure 24. Schematic representation of an asymmetric interferometer. 

55 



Therefore, for the asymmetric interferometer we must choose N = 512 points.   This 

results in a transverse sampling interval 

Ax = 0.272 um. 
(83) 

w, 6.8 urn 

da 80 um 

a 0.6° 

L1 125 um 

L2 3170 um 

L3 1300 [im 

L4 11.4 mm 

Larm 14mm 

L5 1300 um 

L6 3170 um 

L2 1500 um 

Total Length 21.96 mm 

Table 2. Device parameters. 

Since the guide width wx = 6.8 urn is given [9], the discrete guide width is now forced to 

be wd = 6.8 urn as well. The discrete guide width is calculated from Equation (73) as 

6.5um 
wd Ax 

Ax = 6.8um (84) 

This is achieved by choosing the appropriate value for W in Equation (68). Although 

Equation (68) requires a minimum value for W, extra range can be added to ensure the 

correct desired discrete guide width, while minimizing N. An axial sampling interval of 

Az = 2.4 urn is used in this simulation as well. 
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B. BPM IMPLEMENTATION 

The BPM implementation of the physical structure is shown in Figure 25.   The 

step index profile is shown in Figure 25(a), while Figure 25(b) shows the magnitude of 

the optical field as it propagates through the device with 0 volts applied to the electrodes. 

The asymmetric MZI shown in Figure 23 has an inherent difference in the interferometer 

arm lengths, AL, which gives rise to an intrinsic phase bias <j)0 given by [9] 

(j>0 = 2n neffAL/X, ,„ ,, 

where «eff is the mode effective index. The BPM algorithm is implemented using the 

same basic flow diagram shown in Figure 6, utilizing the known physical parameters of 

the device [9]. 

The output characteristics of the physical device were recorded and are compared 

to the BPM analysis in Figure 26. This gives an excellent validation of the BPM 

methodology. However, device loss must still be addressed. 

C. COUPLER DESIGN 

The Y-power divider (YPD) of Figure 23 is notably different than the YPD of 

Figure 11. One of the main advantages of the BPM is the flexibility of implementing 

various design concepts rapidly and analyzing the effect. A more detailed view of the 

input YPD for the asymmetric device is shown in Figures 27. The BPM implementation 

of the YPD index profile is shown in Figure 27(a) and the optical field distribution is 

shown in Figure 27(b). The optical field interaction at the output combiner is of major 

interest, and effects the overall dive characteristics.  Due to the inherent phase offset of 
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(b) 

Figure 25. Single asymmetric MZI: (a) step index profile; (b) BPM analysis. 
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Figure 26. (a) Measured output intensity; (b) BPM calculated output. 
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Figure 27. Input YPD analysis: (a) step index profile; (b) BPM analysis. 
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the asymmetric device the first null occurs at V= 1.0 volts and the first maximum occurs 

at V = 3.1 volts. The BPM profile of the output power combiner index profile is shown 

in Figure 28 while the optical field distribution in the combiner is shown in Figures 29(a) 

and 29(b) for V = 1.0 volts and V = 3.1 volts, respectively. An easier interpretation of the 

effects at the output combiner is seen as a cross-section of the optical field is 

superimposed upon a scaled version of the index structure. The cross-section of L7 

shown in Figures 30(a) and 30(b) show the effects of an applied voltage of V = 1.0 volts 

and V = 3.1 volts, respectively. 

D.   VALIDATION 

Utilizing the BPM calculations of the output power characteristics, the overall 

device loss can be projected using Equation (80) as Loss = 3.42 dB. The actual device 

loss was reported [9] as approximately 3 dB. This is a significant validation of the BPM 

ability to properly include radiation mode losses due to device length and branching 

angles. Since the arm separation distance was substantial in the asymmetric device the 

actual radiation coupling between branches is minimal. However, many parallel 

processing architectures require multiple parallel devices in which radiation coupling may 

be even more significant than radiation losses in the substrate. 

Now that the BPM has been shown to be a valid tool for analysis of optical 

devices, more complex systems may be analyzed with confidence. 

61 



Figure 28. Output power combiner design: step index profile. 
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(a) 

(b) 

Figure 29. Output power combiner BPM analysis: (a) V = 1.0 volts; (b) V = 3.1 volts. 
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Figure 30. Cross-sectional view of L7 region: (a) V = 1.0 volts; (b) V = 3.1 volts. 
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V. PARALLEL CONFIGURATION OF MACH-ZEHNDER 
INTERFEROMETERS 

Parallel configurations of MZIs are important in many signal processing 

architectures. They can efficiently couple wideband rf signals into the optical domain 

making them useful for such applications as high-speed analog-to-digital converters, 

temperature sensing, and real time optical correlators [5]. In these types of architectures 

the interferometers are arranged in parallel configurations containing many successive 

bends and branches that distribute the optical power to the various sections of the circuit. 

A significant problem with the parallel integration of these devices is the limited 

efficiency due to radiation loss [5]. The BPM is a useful tool in designing and analyzing 

these types of systems. 

A.   DEVICE PARAMETERS 

The initial architecture is shown schematically in Figure 31 and consists of two 

parallel interferometers that employ YPD's and combiners that have been analyzed earlier 

in this thesis. The corresponding parameter values are shown in Table 3. The separation 

distance d{ between the interferometers is varied by changing the length of L2 while 

holding the branching angle constant. The individual interferometers are configured 

identically to those analyzed previously. However, the overall grid width must be 

increased to accommodate the parallel array. The window size is again calculated using 

Equation (66); W= 106 um would allow for the decay distances, absorption windows, 

separation distances d, = 20 jam, and dt = 20 urn. Once again, the impact of the window 

65 



Wabs L7 

Wdecay 

Z 

L5 

Figure 31. Schematic diagram of two parallel MZIs. 
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size must be evaluated in relation to the desired discrete guide width wd. In this case the 

guide width is desired to be 3.0 urn, so the appropriate adjustment must be made to the 

grid size W. It is anticipated from previous evaluations that the number of grid points 

will be 512, due to the grid size, so W = 102.4 um is chosen.  Using Equation (48) we 

solve for N as 

2(2.2)(102.4um)  i 
JN-        900nm        ft ' 

(86) 

and as expected N = 512 is chosen. The next step is to determine the transverse sampling 

interval using Equation (49) 

Ax = W 
N 

= 0.2 p.m. (87) 

w vvo 5.81 urn 

W, 3.0 um 

a 1.0° 

az 1.0° 

az 5.0° 

L1 12 p.m 

L2 f(d|) 

L3 280 um 

L4 350 um 

L5 1000 um 

L6 350 um 

L7 280 um 

Table 3. Schematic parameter values. 

The discrete guide width wd can now be verified utilizing Equation (71) we have 

3.0um 
wd = 

0.2um 
0.2um = 3.0um. (88) 
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The validation of the guide width is important in ensuring the correct mode distribution 

and guidance strength. The axial sampling interval is maintained at Az = 2.4 um for this 

analysis. 

B. BPM IMPLEMENTATION 

The BPM implementation of the parallel array index structure is shown in Figure 

32(a) and the optical field distribution is shown in Figure 32(b). In the analysis shown, 

the spacing between the interferometers d, = 10 jam and the radiation losses of the 

individual interferometers is the same as previously noted. However it is apparent from 

the optical field distribution the radiation mode coupling between the adjacent 

interferometers does exist. A clear view of the radiation mode coupling is given in the 

cross-sectional of the L5 region shown in Figure 33. The cross-sectional view shows the 

optical field distribution super-imposed upon a scaled version of the waveguide index 

structure and clearly demonstrates the existence of power coupling. 

C. RADIATION MODE EFFECTS 

The radiation modes shown in Figure 32(b) may extend to the point that 

interference with adjacent interferometers exists. The effects the radiation modes have on 

the interferometer outputs and the respective change in the mode propagation constant 

(Aß) are a function of the separation distance dt. The radiation modes of one 

interferometer may also affect the radiation modes of the other interferometer. This 

interference effect produces a finite Aß within the affected interferometer. The radiation 

can be eliminated by extending the separation distance dt to infinity.   However this is 
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Figure 32. Radiation mode coupling between two parallel interferometers: (a) step index 
profile; (b) BPM analysis. 
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Figure 33. Cross-sectional view at the center of L5 (V = 0). 
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obviously impractical. The BPM provides an excellent method for analyzing the effects 

of the radiation mode coupling and is a useful tool for minimizing radiation mode effects 

while optimizing the interferometer spacing. The dependence of radiation mode coupling 

on interferometer spacing dt are clearly demonstrated through Figures 34(a) and 34(b). 

The interferometer spacing in the index profile of Figure 34(a) is reduced to dt = 5 u.m 

and the effects are directly demonstrated in the field distribution of Figure 34(b). 

Although extending the interferometers to infinity is not practical, it is anticipated that 

radiation coupling effects will drop off rapidly as d, is increased. The results of 

increasing the separation distance to dt = 20 urn are clearly shown in Figures 35(a) and 

35(b). It is apparent from this representation that radiation mode coupling can be 

minimized utilizing the BPM as a design tool. 

1. Input/Output Characteristics 

The effects of radiation mode coupling can be quantified using the BPM 

algorithm. The two interferometers are initially spaced very close together. For each 

separation distance dt the input power to each interferometer and their respective output 

powers are recorded with V = 0. Due to the symmetry of the input power distribution 

equal power is delivered to the input of each interferometer. Figure 36 shows the input 

power and the output power for the left interferometer as a function of dt (normalized to 

the input power at the smallest separation distance). At small separation distances the 

output power is severely degraded due to the radiation coupling between the 

interferometers.    The effects of the radiation mode coupling go through regions of 
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Figure 34. Parallel interferometers with spacing dj = 5 \im: (a) step index profile; 
(b) BPM analysis. 
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Figure 35. Parallel interferometers with spacing dj = 20(xm: (a) step index profile; 
(b) BPM analysis. 
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Figure 36. Input versus output power for the left interferometer. 
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constructive and destructive interference as d, is increased. However, these evaluations 

are performed with V = 0. The arm separation must be at least large enough to minimize 

the interference effects. 

2. Insertion Loss 

Insertion loss is also an important characteristic of optical interferometers. The 

induced Aß due to the radiation mode interference tends to decrease the power 

transmitted and is reflected in the insertion loss calculation [5] 

Lu(d,)=101og(=£-1 (89) 
\ri,2/ 

where P, is the optical power that would be transmitted by the waveguide if the modulator 

were absent, and Pu is the intensity transmitted with the modulator in place and V = 0. 

To calculate the insertion loss a special index structure was constructed and is shown in 

Figure 37(a). The right interferometer has been replaced with a straight section of the 

waveguide. The magnitude of the optical field is shown in Figure 37(b). It can be noted 

from Figure 37(b) that even though the interferometer is replaced, the bends from the 

initial YPD and the branching angle cause perturbations in the optical field. The subtle 

insight obtained from this structure reinforces the fact that radiation losses have a direct 

dependence on branching angles. The insertion loss as a function of the separation 

distance dt is shown in Figure 38. As the distance between the interferometers increases, 

the insertion loss due to the induced Aß decreases. Insertion loss of less than 1/2 dB is 

obtained at a separation distance of 4 urn. For separation distances of greater than 4 urn 

the radiation modes start to interfere constructively as was noted in the analysis of the 
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Figure 37. Modified architecture for insertion loss and mode coupling calculations: 
(a) step index profile; (b) BPM analysis. 
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Figure 38. Insertion loss as a function of the separation distance. 
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output characteristics. This constructive interference increases the insertion loss 

somewhat and then tapers off at larger d, [5]. 

3. Radiation Mode Dependent Finite Aß 

As previously mentioned, the induced Aß due to the radiation mode interference 

gets smaller as d{ gets larger. The expression that relates the transmission efficiency and 

the degradation in output intensity due to the radiation losses Pte is given as [5] 

Pioss = Pin cos2(AßL/2)-Pi,2. (90) 

An approximation for Aß can be found as [5] 

AR      (A        -/Pl.2+PlossV/2 (9l) Aß = ^-Jcos ^——j    . (91) 

Since the input power changes for each dt due to the increase in path length, a 

normalization procedure is needed so that the induced Aß can be monitored. First, the 

power loss through a stand-alone interferometer is computed, using the architecture of 

Figure 3 or Figure 37. The percent power loss incurred (assumed to be all radiation mode 

losses) is calculated to bepL = 5.8%. The output power at the given d-t is then normalized 

using the respective input power and the loss value through the device pL. To normalize 

Ploss to the input power at each separation distance we set 

Ploss=PLPin- (92) 

The approximation for Aß is evaluated for several separation distances with the resulting 

Aß shown in Figure 39. The induced Aß drops off exponentially as the separation 

distance is increased. However the effects of the periodic interference are clearly shown 

in the 10 um to 14 urn separation range. 
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4. Modulation Depth 

The modulation depth of the individual interferometers and the corresponding 

effect that the radiation modes have on these modulation depths is also of concern.  As 

mentioned earlier, the Input/Output analysis did not include the effects of radiation 

coupling with electrode voltages applied.     The radiation-actuated Aß reduces the 

modulation depth below 100%. A small amount of radiation interference can be tolerated 

if the   performance   of one   interferometer   does   not   adversely   affect  the   other 

interferometer.     Using the  theoretical  output  intensity  of Equation (63)  for the 

symmetrical  MZI the first electrode voltage point that produces output intensity 

extinction occurs at 

V,=   /r
Wl    3- (93) 2L5rr33n:i 

where T , r33, and n are the same parameters defined for the single symmetric 

interferometer analyzed previously. The theoretical VK is calculated to be 8.17 V for the 

structural parameters given in Table 3. The BPM is used to examine the modulation 

depth of the left interferometer and the effect that the electrode voltage has on the 

adjacent interferometer as well. Figures 40, 41, 42, 43, and 44 show both the theoretical 

modulation characteristics and the BPM calculated outputs for the left and right 

interferometers for d, = 0.66 urn, 1.33 urn, 2.0 urn, 4 um, and 10.66 (am, respectively. 

Figures 40, 41, and 42 demonstrate the adverse effects of the radiation mode coupling 

from the left interferometer into the right interferometer. At greater separation distance 

the behavior closely follows the theoretically expected performance.    However, the 
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Figure 40. Modulation characteristics (di = 0.66 ^im). 
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Figure 41. Modulation characteristics (di = 1.33 u.m). 
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Figure 42. Modulation characteristics (di = 2.0\im). 
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Figure 43. Modulation characteristics (di = 4.0\xm). 
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Figure 44. Modulation characteristics (di = 10.66jam). 
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modulation depth does not quite reach the zero limit predicted by theory. The output 

intensity of the right interferometer is also affected severely at small separation distance, 

even though no electrode voltage is applied to the right interferometer. At larger distance 

the radiation mode coupling causes only a slight rise in the output intensity. 

The effects of the radiation mode coupling with applied electrode voltages are 

readily apparent when a cross section of the output optical field distribution is viewed. 

Figure 45 shows a cross-sectional view at the output, L7 section, of the parallel array with 

VK applied to the left interferometer and V = 0 applied to the right interferometer. The 

mode power in the left interferometer has been coupled into the radiation modes as shown 

by the increased radiation modes adjacent to the left interferometer vice the radiation 

modes that exist due to the right interferometer. The effect of the absorption window is 

also readily apparent in Figure 45 as the radiation at the boundary is absorbed 

continuously. The total impact of the increased radiation modes due to applied electrode 

voltages is seen by comparing the view of Figure 45 to Figure 46, which is the same 

cross-sectional area with V = 0 on both interferometers. 
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Figure 45. Cross-sectional view at the output of the array (V = 8.17 volts). 
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Figure 46. Cross-sectional view at the output of the array (V - 0). 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The BPM has been previously utilized for integrated optical device analysis [4], 

however, the applicability of the 2-dimensional effective index method to these structures 

had not been shown empirically. The validation of the effective index approximation 

using the BPM through comparison to lab recorded data of a physical device was a major 

validation of this method. The BPM has been demonstrated as not only an effective 

analysis tool, but a potentially useful design tool as well. 

The development of the prefolded global propagator has made the BPM not only 

applicable, but computationally efficient. The BPM algorithm is written in a C^ code 

that can be ported to personal computer platforms. The memory and computational time 

requirements have been reduced sufficiently to make this analysis an attractive method of 

optical circuit analysis. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the BPM has been developed into a very effective simulation tool, the 

effective index method does not take into account variations in the vertical transverse 

plane that may have significant effects. New technologies in integrated optics are now 

taking advantage of laser trimming technology to modify slightly the physical structures 

of optical devices in order to make fine adjustments to inherent phase bias during the 

post-fabrication phase [10]. The asymmetric device modeled in this thesis was phase 

tuned by laser ablation as shown in Figure 47.   The laser trimming is performed after 
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Figure 47. Asymmetric interferometer showing laser ablation region. 
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manufacture in order to optimize linearity [10]. Due to variations in temperature or other 

imprecise fabrication results the inherent phase bias desired in such a device may not be 

exact, therefore some method of post manufacture processing is highly beneficial. The 

BPM could easily be extended to a 3-dimensional structure in order to model these types 

of devices. The global propagator scheme would still be applicable to the 3-dimensional 

scheme so that computational requirements would only increase by the number of cross 

sections in the vertical grid. The power distribution through 3-dimensional devices 

would be viewed through cross-sections or the vertical dependence could be integrated 

out after the analysis so that total optical distributions could be viewed, such as the views 

generated in this thesis. 

The BPM could also be utilized to determine the feasibility of electrooptic 

switches that take advantage of the linear Pockels effect. A proposed design of a digital 

electrooptic switch is shown in Figure 48. A switching device such as Figure 48 could 

easily be simulated using the BPM method, and may have potential uses in future 

integrated optical components. Many potential applications of optical devices are 

constantly emerging and the BPM may have many uses in design and analysis of these 

devices. The key to the success of the BPM analysis on these new technologies are 

validity, speed of computation, and flexibility. 
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Figure 48. Proposed digital electrooptic switch. 
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APPENDIX. COMMAND LINE SCRIPT FILES 

This appendix contains some examples of typical command line script files that 

were used to run extended iterations of BPM analysis on the Sun workstations. 

1.    EXAMPLE FOR SINGLE SYMMETRIC CODE 

This file passes lengths for L2 and L3 which are in microns. The 410 is for 

section L4, the 120 is for L4P coupler length, the 1000 is the electrode or L5 length, the 0 

0 are the left and right voltages, and the last digit tells the code that the entire index and 

optical field data sets should be saved to disk. However, note that in this case although 

the right voltage is passed, it is not used, it was left in for ease of use when changing from 

single to parallel systems. 

Zsing.h 
#! /bin/csh -f 
bpmP 12 12 410 120 1000 0   0 1 

Table 4 below gives a breakdown of the input line items. 

L2 L3 L4 L4P L5 VoltsL VoltsR Save 

bpmP 12 12 410 120 1,000 0 0 1 

Table 4. Input items. 

2.    EXAMPLE FOR ASYMMETRIC CODE 

This is a much simpler case. Although Dr. Bulmer of the Naval Reasearch 

Laboratory gave me the arm separation of 80 microns [10], I built the code to take any 

arm separation distance and calculate what the L2 and L3 lengths would be to support that 

structure. So the parameters passed in for the example are: arm separation is 80 urn, V = 
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4.00 volts, and the data is to be kept.  Caution should be exercised in this case.    These 

data sets can run over 20 MB per run.  It can shut the whole network down if caution is 

not exercised. 

Zasymmetric.h 
#! /bin/csh -f 
bpmP 80 400 1 

3. EXAMPLE FOR PARALLEL CODE 

This set up is in the exact same format as for the single symmetric case. The one 

item that should be observed in particular is the voltage input. The voltage is multiplied 

times 10"2, so that 400 = 4.00 volts. 

Zparallel.h 
#! /bin/csh -f 
bpmP 1630 1000 1595 440 1000    0 0 1 

4. EXAMPLE FOR MULTIPLE RUNS 

The file name is left off the following example. The only real constraint in file 

names on the Unix system is that the file must have the executable flag enable in the file 

properties section. Typically "Z.h", "Zl.h" or some short variation was used. The 

following example makes 6 runs of the code and varies the left interferometer voltage 

from 0:0.1:0.5 volt. 

#! /bin/csh -f 
bpmP 1630 1000 1595 440 1000 0 0 0 
bpmP 1630 1000 1595 440 1000 10 0 0 
bpmP 1630 1000 1595 440 1000 20 0 0 
bpmP 1630 1000 1595 440 1000 30 0 0 
bpmP 1630 1000 1595 440 1000 40 0 0 
bpmP 1630 1000 1595 440 1000 50 0 0 
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